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LETTER TO THE EDITOR 

Fluid penetration through a crack in a pressure gradient 

Hans J Herrmann and Muhammad Sahimi 
Hochstleistungsrechenzentrum, KFA Jiilich, Postfach 1913,5170 Jnlich, Federal Republic 
of Germany 

Received 6 August 1993 

Abstract. We investigate invasion percolation fingers in'a quenched medium in which the 
randomness has a gradient following a power law both in the direction of the flow and 
perpendicular to it. The first gradient corresponds to a pressure gradient, the second one 
to the density of microcracks that arises in a self-organized way around a large crack. We, 
give an argument for the value of the fractal dimension as found in previous simulations. 
We calculate the roughness exponent of the fingers and find a value consistent with 4 as 
predicted by the argument. 

The penetration of fluids in porous media [l] is usually acompanied by the creation 
and propagation of maior cracks through which this fluid will flow. This coupling 
between fluid transport and cracking has hardly ever been attacked theoretically, 
although it seems to be the main mechanism in technologically very important 
applications like hydraulic fracturing. It is the purpose'of this letter to present a very 
simple model for this problem and its numerical analysis. 

We want to consider a non-wetting fluid penetrating into a two-dimensional 
quenched disordered medium. The disorder is modelled by placing random mumbers 
zi on the sites of a square lattice distributed according to a distribution P(z,) .  Fluid 
penetration into a random solid has often been described by invasion percolation. In 
particular, in [2],  a model has been proposed in which a gradient is introduced by 
assuming the random numbers to be distributed as P(zJ ~ 9 .  with r the distance 
from the injection point. This graded distribution of random permeabilities models, to 
some degree, a pressure gradient. A numerical simulation of that model showed that, 
for positive a the clusters are fractal with a fractal dimension of df=1.44f0.02, 
independent of a. This result has not been understood yet. Here we will give an 
argument for this value. 

The penetration of a fluid is, however, usually accompanied by the opening of a 
crack in the medium. It has been shown [3,4] that brittle crack formation is 
accompanied by the formation of a cloud of microcracks around the main crack and 
that the density of crack surface generated by the microcracks decays like a power law 
as a distance p of the position of the main crack. We want to include this effect into the 
model proposed in [2] by assuming that P(zJ a p B .  This will be implemented into our 
model by the following prescription: 

We consider a square lattice of horizontal length L1 and vertical height L, and with 
periodic boundaries in the vertical direction. At line jo  on the left boundary we inject 
the fluid, i.e. we occupy this site. Then on each site of the first two columns a random 
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permeability is placed distributed according to P(rJ =lmod((j-jo), L2/216 where j is 
the line number of point i. Now the usual invasion percolation algorithm is applied: 
among all the sites on the surface of the finger, i.e. all the sites adjacent to the 
occupied sites, the one having the smallest permeability value is chosen and occupied. 
Each time the finger advances by one column the (random) permeabilities of the 
following column are chosen according to the distribution 

P ( z i ) a  mod ( j - jJ , -  X ( k - l ) - "  I ( :)I6 
where k is the number of the column and jlis the number of the line at which the finger 
just advanced by a new column. When the finger touches the right boundary the 
process is stopped. 

In the described model the noise is quenched since once the random permeabilities 
are defined on a site they will not change any more. When p = 0 we recover the model 
described in [2]. If p>O the vertical width of the finger at a given column is confined 
by the power law gradient of permeabilities so that if is not chosen too small the 
finger can wind around the tube f o q e d  by the periodic boundary conditions making it 
insensitive to finite size effects in the vertical direction. 

In the following we want to argue in favour of the fractal dimension df= 1.44 found 
for the model for p=O (in two dimensions) 111: 

We define a dimensionless pressure f = (p  -pc) /pc,  which plays the same role as the 
occupation probability in random percolation. The existence of an external gradient 
induces a macroscopic anisotropy  in^ the system: the fluid can penetrate the system in 
the direction of the macroscopic gradient (longitudinal direction) much easier than in 
the transverse direction (perpendicular to the macroscopic gradient). Therefore, it is 
not unreasonable to assume that the system is characterized by fwo correlation lengths 
EL and ET in the longitudinal and transverse directions, respectively. Thus, as f-4, 
one has 

. tL- f -L  &-f-". (2) 
With these assumptions our problem becomes similar to directed percolation (for 
reviews and references see Kinzel[6] and Duarte er a1 171). However. aside from the 
fact that we are considering invasion percolation, we should emphasize the main 
difference between our model and directed percolation. The anisotropy in our model 
is dynamically induced: if we reverse the direction of the external gradient, we will still 
have macroscopic transport (in the direction of the macroscopic gradient), whereas 
the bias and anisotropy in directed percolation are stark and fixed. 

We can now calculate a fractal dimension for the finger. The number of sites N, in 
it is the product of its volume ELtd,-Land the fraction of the sites of the lattice X" that 
have been invaded by the fluid. If we assume that as f- 0 

then, Ns-ELE$-'ELp'', and if for length scales L<<& we define the fractal dimension 
df by N ,  - E $ ,  we obtain 

(3) XA - fB -ELF'% 

If we assume that the exponents defined above are the same as those defined for 
directed percolation, then, for d=2, ~ ~ ~ 1 . 7 3 4 ,  vT==l.l,  and p=0.28. These imply 
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Figure 1. Invading fingers when they percolate through a system of L1=320 (&=41) for 
(a)O=Z, a=l;  (b)p=O.S, a= 1; (c)p=0.7, a=l;  (d)p=0.7 ,  a=4and(e) a = l  andan 
exponential distribution of the form eo.* in the Cransvene direction. 

that df=1.47, in good agreement with the simulation result of de Arcangelis and 
Herrmann [2]. 

Reference [2] also considered a directed invasion percolation process in a rudiul 
geometry, and obtained df=1.2910.03.  We argue that in this case the longitudinal 
direction is the same as in the previous case, but motion in the transverse direction is 
essentially a random walk. This implies that, &-5y2, i.e. vT=vT=vL/2, which means 
that 

For d = 2  we obtain d,= 1.34, in good agreement with the result of de Arcangelis and 
Herrmann [Z]. 

Next let us present our numerical results for the case in which the quenched noise 
is given by (1). In figure 1 we see the invaded clusters for various parameters. If 8 = 2 
the invading finger is very straight (figure 1(a)) and for decreasing B (figure l(b) and 
I(c)) it has much denser sidebranches and stronger deviations from the line io= 
constant given.by the original injection point. The effect of a,  on the contrary, is 
rather weak as seen when comparing figures l(c) and l(d). It is interesting to note that: 
by taking an exponential distribution instead of a power law in the transverse direction 
no qualitative difference is noted as can be seen from figure l(e). 

We calculate the width w of the invasion cluster through 
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FigureZ. Log-log plot of the width w of the finger as a function of its length L, for 
&=U, a = I  and 8=1 (e ) ,  8=2 (i) and an exponential distribution e",$ (x). The 
straight line is a linear fit through the last six data points and has a slope of 0.46. 

where N, is the total number of sites in the finger. Then w is averaged over 1000 
different samples. In figure 2 we see a log-log plot of the width w as a function of L1. 
In all cases the data fall asymptotically on straight lines of slope a little below 0.5. 
Since the curves, however, have a slight upward curvature the resulting roughness 
exponent 5 defined through 

w-L% (7) 
could well be f. From figure 2 we also see that the detailed distribution of quenched 
permeabilities in the transverse direction has no noticeable effeet on the roughening 
exponent. Even an exponential distribution gives the same result. 

The numerical data suggest that the penetrating fluid essentially performs a 
random walk in the transverse direction (c=f). The confining distribution given by 
the power law distribution of microcracks only has an effect on the amplitude of the 
width of the clusters but not on the roughening exponent. 
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